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With the ever increases in the capabilities of computers for numerical computations, we

are on the verge of using these tools to model manufacturing processes for improving

the efficiency of these processes as well as the quality of the products. One such pro-

cess is casting for the production of metals. However, in order to model metal casting

processes in a meaningful way it is essential to have the basic properties of these mate-

rials in their molten state, solid state as well as in the mixed state of solid and liquid.

Some of the properties needed may be considered as intrinsic such as the density, heat

capacity or enthalpy of freezing of a pure metal, while others are not. For instance, the

enthalpy of solidification of an alloy is not a defined thermodynamic quantity. It's value

depends on the micro-segregation of the phases during the course of solidification. The

objective of the present study is to present a thermodynamic approach to obtain some of

the intrinsic properties and combining thermodynamics with kinetic models to estimate

such quantities as the enthalpy of solidification of an alloy.

A schematic diagram illustrating our general approach in obtaining the thermodynamic

description of an alloy is shown in Figure 1. The starting point is to have suitable and

appropriate thermodynamic models for all the phases involved. All of these models have

unknown parameters. The parameter values must be obtained from experimental ther-

modynamic data. Although most thermodynamic models are empirical or semi-empirical,

we attempt to use models with some physical basis and certainly with the least number

of parameters to describe such a phase. Once we have the thermodynamic properties of

all the phases in a binary described, we can then calculate stable binary phase equilibria

and compare them with the measured diagrams. If the thermodynamic data and phase

diagram data are correct and the models used are suitable, the calculated diagram

should agree with the measured equilibria. Since all experimental measurements have

uncertainties, it is often necessary to use thermodynamic and phase equilibrium data

simultaneously to optimize the parameter values of the thermodynamic models. Of
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course, we always use the thermodynamic values as the starting point for our optimiza-

tion. We can also calculate phase equilibria at either very high temperatures where mea-

surements are difficult to carry out experimentally or at very low temperatures where the

kinetics of reaction are so slow that achievement of equilibrium is difficult if not impossi-

ble. We can also calculate metastable equilibria from the thermodynamic models particu-

larly those involving a supercooled liquid phase. A knowledge of the metastable equilibria

is important in controlling the resulting microstructure of alloys during solidification. In sev-

eral systems, our calculated metastable equilibria are in accord with experimental mea-

surements. In addition, on the basis of the binaries, we may extend the calculations/

predictions to ternary and higher order systems. This is particularly important since most

commercial alloys are of multi-components.

This type of approach allows us to have the thermodynamic descriptions of the phases

involved as well as to obtain the values for the distribution coefficients as a function of

composition and temperature. The distribution coefficient is a basic parameter in model-
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ing the microsegregation of an alloy. Yet it is usually not available from experimental

measurement for a multi-component alloy as a function of temperature. Coupling the

thermodynamic descriptions of the phases with a kinetic model, we can compute such

important quantities such as the enthalpy of solidification which is needed for macro-

modeling of solidification. Moreover, coupling of the thermodynamic descriptions of the

phases with semi-theoretical models, we can estimate/calculate the surface tensions of

molten alloys provided the values of the component elements are known.
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Nothing is better
than

good experimental data

But We Have To Be
Realistic

We don't have either the time or
the resource to measure all the

needed materials properties.

We must develop
methodologies

to estimate these

materials properties
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In fact, a combined thermodynamic

modeling/experimental approach is
the only sensible way to build up a
material data base for engineering

applications!

Solid-liquid equilibria

(distribution coefficient)

Enthalpy of fusion

Enthalpy of Solidification

Heat capacity

Surface tension

Thermodynamic Approach
to Obtain Phase

Equilibrium Data
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Thermodynamic
models:
Parameters
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Experimental
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Thermodynamic
Models
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Thermodynamic Model (Equation) for Solutions (both Solid and

Liquid) with Small Deviations from Regular Solution Behavior.

AXSGa = x(1-x) [u + vx + wx 2]

with u, v, w = A + BT + CT InT, where A, B, C are constants.
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An Example
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Enthalpy of Solidification

Case I: Equilibrium Solidification

!
!

A Co B A Co B

Before Solidification:

AHL(T L, CO)

After Solidification:

(Ts,

AHSfrs, CO)

Enthalpyof Solidification:

AH = AHS(Ts , Co)- AHL(TL, Co)
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Case Ih Eutcctic Solidification

TE

A Cam CE C_mh A Cam C__ClamB

Before Solidification:

::_ :_. " _: _ ._._i

_-IL(TE, C E)

After Solidification:

_utectic, _+_ _

AH(Z(TE, C(xm)

AHIB(TE, CIBm)

Enthalpy of Solidification:

AH = [a AHa(TE, Cam ) + b AH_(T E, C_m)]

-/_-IL(TE, CE)]
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Experimental Liquidus Projection of

AI-Mg-Cu
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Calculated Liquidus Projection for the

Al-rich comer of AI-Mg-Cu
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Distribution Coefficient, k
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Comparison between the model proposed in

this study and that by Roozs and Exner

Mass balance:

Schefl equation with
solid state diffusion
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Case llI: Scheil Equation

c A_Cmaa C_m B

Scheil Equation:

Cs* = kCo(1-fs)(k-l)

Before Solidification: After Solidification:

__!_l kC°l _ _ _ i .e i_,
' _ "-,rEr_--

AHL(TL' Co) AI-IE= a zMtla(TmC_m)+ b AH_(Tm Cpm)

if f= ,_ah-_ = t_H (r_, co df,_] / f,_
0

Enthalpy of Solidification:

= AH EAH (A_a fa + fz) _ AH L (TL, Co)
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Case III: Scheil Equation

Scheil Equation:

_ (kl)
Cs* = kCo(1 fs) -

Before Solidification:

AI-ILO'L,Co)

Enthalpy of.Solidification:

Afar Solidification:

AI-IB= a_'_frE, c,,=) + bAa_frs Corn)

[fa a

AI_=[Jo AII frE, CJdfa]/fa

AH = (AH _ fcL+ AH_ f_) -_I L(TL,Co)
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Case III: Scheil Equation

C A_ cOcOma CE Cl3m B
kC o

Scheil Equation:

Cs* = kCo(1-fs)(k-l)

Before Solidification: After Solidification:

c_

ZMr'IL(TL' Co) AH E== a AH(X(TE, Cam ) + b AHI3(TE, Cl_m)

fGt

AH-a = [I AHa(TE' Cs) dfa ] / fa
J0

Enthalpy of Solidification:

- Z_ E AH LAH (AH(_ f(_ + re)_ (TL, Co)
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Estimation of
Cp

Yeum, Speiser & Poirier (1989)

Data Needed to Estimate Surface

Tension (¢_) of Binary Liquid Alloys

_A:

CB:

PA:

PB:

AXSG:

Surface tension of the pure

component A

Surface tension of the pure

component B

Density of the pure

component A

Density of the pure

component B

Excess Gibbs energy of the

liquid alloy

Surface

Tension
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10 Binary Liquid Alloy Systems

were Evaluated

+ deviations from ideal behavior

- deviations from ideal behavior

+,- deviations from ideal behavior
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Conclusions

1. A careful assessment of the
thermodynamic and phase
equilibrium data of binary and
higher order systems is essential
for developing a data base for
engineering applications.

Distribution Coefficients ->
Paths of Solidification

Enthalpy of Fusion
Enthalpy of Solidification
Heat Capacity
Surface Tension

2. A combined modelling /
experimental approach is the best
(perhaps the only realistic)
approach to obtain a
thermodynamic description of
multi-component alloy systems.
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